spey.backends.distributions.ConstraintModel

spey.backends.distributions.ConstraintModel#

class spey.backends.distributions.ConstraintModel(pdf_descriptions: List[Dict[str, Any]])[source]#

Constraint term modelled as a Gaussian distribution.

Parameters:

pdf_descriptions (List[Dict[Text, Any]]) –

description of the pdf component. Dictionary elements should contain two keywords

  • "distribution_type" (Text): "normal" or "multivariatenormal"

  • "args": Input arguments for the distribution

  • "kwargs": Input keyword arguments for the distribution

__init__(pdf_descriptions: List[Dict[str, Any]])[source]#

Methods

__init__(pdf_descriptions)

expected_data()

The expectation value of the constraint model.

log_prob(pars)

Compute log-probability

sample(pars, sample_size)

Generate samples