spey.backends.default_pdf.third_moment.compute_third_moments#
- spey.backends.default_pdf.third_moment.compute_third_moments(absolute_upper_uncertainties: ndarray, absolute_lower_uncertainties: ndarray, return_integration_error: bool = False) Tuple[ndarray, ndarray] | ndarray [source]#
Assuming that the uncertainties are modelled as Gaussian, it computes third moments using Bifurcated Gaussian with asymmetric uncertainties.
\[m^{(3)} = \frac{2}{\sigma^+ + \sigma^-} \left[ \sigma^-\int_{-\infty}^0 x^3 \mathcal{N}(x|0,\sigma^-)dx + \sigma^+ \int_0^{\infty} x^3 \mathcal{N}(x|0,\sigma^+)dx \right]\]Note
Recall that expectation value of the \(k\) th moment of a function \(f(x)\) can be calculated as
\[\mathbb{E}[(\mathbf{X} - c)^k] = \int_{-\infty}^\infty(x-c)^kf(x)dx\]Attention
third_moment_expansion()
function expects \(8\Sigma_{ii}^3 \geq (m^{(3)}_i)^2\) since this function is constructed with upper and lower uncertainty envelops independent of covariance matrix, it does not guarantee that the condition will be satisfied. This depends on the covariance matrix.- Parameters:
absolute_upper_uncertainties (
np.ndarray
) – absolute value of the upper uncertaintiesabsolute_lower_uncertainties (
np.ndarray
) – absolute value of the lower uncertaintiesreturn_integration_error (
bool
, defaultFalse
) – If true returns integration error
- Returns:
Diagonal elements of the third moments and integration error.
- Return type:
Tuple[np.ndarray, np.ndarray]
ornp.ndarray