spey.backends.default_pdf.ThirdMomentExpansion#
- class spey.backends.default_pdf.ThirdMomentExpansion(signal_yields: ndarray, background_yields: ndarray, data: ndarray, covariance_matrix: ndarray, third_moment: ndarray, signal_uncertainty_configuration: Dict[str, Any] | None = None)[source]#
Simplified likelihood interface with third moment expansion. Third moment expansion follows simplified likelihood construction and modifies the
and . Using the expected background yields, , diagonal elements of the third moments, and the covariance matrix, , one can write a modified correlation matrix and function as followswhich further modifies
and the multivariate normal has been modified via the inverse of the correlation matrix, . See [arXiv:1809.05548] Sec. 2 for details.- Parameters:
signal_yields (
np.ndarray
) – signal yieldsbackground_yields (
np.ndarray
) – background yieldsdata (
np.ndarray
) – observationscovariance_matrix (
np.ndarray
) – covariance matrix (square matrix)third_moment (
np.ndarray
) – third moment for each region.signal_uncertainty_configuration (
Dict[Text, Any]]
, defaultNone
) –Configuration input for signal uncertainties
absolute_uncertainties (
List[float]
): Absolute uncertainties for the signal- absolute_uncertainty_envelops (
List[Tuple[float, float]]
): upper and lower uncertainty envelops
- absolute_uncertainty_envelops (
correlation_matrix (
List[List[float]]
): Correlation matrixthird_moments (
List[float]
): diagonal elemetns of the third moment
Note
Each input should have the same dimensionality, i.e. if
data
has three regions,signal_yields
andbackground_yields
inputs should have three regions as well. Additionallycovariance_matrix
is expected to be square matrix, thus for a three region statistical model it is expected to be 3x3 matrix. Following these,third_moment
should also have three inputs.- __init__(signal_yields: ndarray, background_yields: ndarray, data: ndarray, covariance_matrix: ndarray, third_moment: ndarray, signal_uncertainty_configuration: Dict[str, Any] | None = None)[source]#
Methods
__init__
(signal_yields, background_yields, ...)asimov_negative_loglikelihood
([poi_test, ...])Compute negative log-likelihood at fixed
for Asimov data.combine
(other, **kwargs)A routine to combine to statistical models.
config
([allow_negative_signal, poi_upper_bound])Model configuration.
expected_data
(pars[, include_auxiliary])Compute the expected value of the statistical model
get_hessian_logpdf_func
([expected, data])Currently Hessian of
is only used to compute variance on .get_logpdf_func
([expected, data])Generate function to compute
where is the parameter of interest and are nuisance parameters.get_objective_function
([expected, data, do_grad])Objective function i.e. twice negative log-likelihood,
.get_sampler
(pars)Retreives the function to sample from.
minimize_asimov_negative_loglikelihood
([...])A backend specific method to minimize negative log-likelihood for Asimov data.
minimize_negative_loglikelihood
([expected, ...])A backend specific method to minimize negative log-likelihood.
negative_loglikelihood
([poi_test, expected])Backend specific method to compute negative log-likelihood for a parameter of interest
.Attributes
constraints
Constraints to be used during optimisation process
signal_uncertainty_configuration
arXiv
arXiv reference for the backend
author
Author of the backend
constraint_model
retreive constraint model distribution
doi
Citable DOI for the backend
is_alive
Returns True if at least one bin has non-zero signal yield.
main_model
retreive the main model distribution
name
Name of the backend
spey_requires
Spey version required for the backend
version
Version of the backend