spey.backends.default_pdf.ThirdMomentExpansion

spey.backends.default_pdf.ThirdMomentExpansion#

class spey.backends.default_pdf.ThirdMomentExpansion(signal_yields: ndarray, background_yields: ndarray, data: ndarray, covariance_matrix: ndarray, third_moment: ndarray, signal_uncertainty_configuration: Dict[str, Any] | None = None)[source]#

Simplified likelihood interface with third moment expansion. Third moment expansion follows simplified likelihood construction and modifies the λ and Σ. Using the expected background yields, mi(1), diagonal elements of the third moments, mi(3) and the covariance matrix, mij(2), one can write a modified correlation matrix and λ function as follows

Ci=sign(mi(3))2mii(2)cos(4π3+13arctan(8(mii(2))3(mi(3))21))Bi=mii(2)2Ci2Ai=mi(1)Ciρij=14CiCj((BiBj)2+8CiCjmij(2)BiBj)

which further modifies λi(μ,θ)=μnsigi+Ai+Biθi+Ciθi2 and the multivariate normal has been modified via the inverse of the correlation matrix, N(θ|0,ρ1). See [arXiv:1809.05548] Sec. 2 for details.

Parameters:
  • signal_yields (np.ndarray) – signal yields

  • background_yields (np.ndarray) – background yields

  • data (np.ndarray) – observations

  • covariance_matrix (np.ndarray) – covariance matrix (square matrix)

  • third_moment (np.ndarray) – third moment for each region.

  • signal_uncertainty_configuration (Dict[Text, Any]], default None) –

    Configuration input for signal uncertainties

    • absolute_uncertainties (List[float]): Absolute uncertainties for the signal

    • absolute_uncertainty_envelops (List[Tuple[float, float]]): upper and lower

      uncertainty envelops

    • correlation_matrix (List[List[float]]): Correlation matrix

    • third_moments (List[float]): diagonal elemetns of the third moment

Note

Each input should have the same dimensionality, i.e. if data has three regions, signal_yields and background_yields inputs should have three regions as well. Additionally covariance_matrix is expected to be square matrix, thus for a three region statistical model it is expected to be 3x3 matrix. Following these, third_moment should also have three inputs.

__init__(signal_yields: ndarray, background_yields: ndarray, data: ndarray, covariance_matrix: ndarray, third_moment: ndarray, signal_uncertainty_configuration: Dict[str, Any] | None = None)[source]#

Methods

__init__(signal_yields, background_yields, ...)

asimov_negative_loglikelihood([poi_test, ...])

Compute negative log-likelihood at fixed μ for Asimov data.

combine(other, **kwargs)

A routine to combine to statistical models.

config([allow_negative_signal, poi_upper_bound])

Model configuration.

expected_data(pars[, include_auxiliary])

Compute the expected value of the statistical model

get_hessian_logpdf_func([expected, data])

Currently Hessian of logL(μ,θ) is only used to compute variance on μ.

get_logpdf_func([expected, data])

Generate function to compute logL(μ,θ) where μ is the parameter of interest and θ are nuisance parameters.

get_objective_function([expected, data, do_grad])

Objective function i.e. twice negative log-likelihood, 2logL(μ,θ).

get_sampler(pars)

Retreives the function to sample from.

minimize_asimov_negative_loglikelihood([...])

A backend specific method to minimize negative log-likelihood for Asimov data.

minimize_negative_loglikelihood([expected, ...])

A backend specific method to minimize negative log-likelihood.

negative_loglikelihood([poi_test, expected])

Backend specific method to compute negative log-likelihood for a parameter of interest μ.

Attributes

constraints

Constraints to be used during optimisation process

signal_uncertainty_configuration

arXiv

arXiv reference for the backend

author

Author of the backend

constraint_model

retreive constraint model distribution

doi

Citable DOI for the backend

is_alive

Returns True if at least one bin has non-zero signal yield.

main_model

retreive the main model distribution

name

Name of the backend

spey_requires

Spey version required for the backend

version

Version of the backend